
论文编号: 

第一作者所在部门: 

中文论文题目: 
Ant colony classification mining algorithm based on pheromone attraction and exclusion

英文论文题目: 
Ant colony classification mining algorithm based on pheromone attraction and exclusion

论文题目英文: 

作者: 
Yang, Lei

论文出处: 

刊物名称: 
SOFT COMPUTING

年: 
2017

卷: 
21 
期: 
19 
页: 
57415753 
联系作者: 

收录类别: 

影响因子: 

摘要: 
Ant colony optimization algorithms have been applied successfully in classification rule mining. However, basic ant colony classification mining algorithms generally suffer from problems, such as premature convergence and falling into local optimum easily. Simultaneously, the classification mining algorithms use sequential covering strategy to discover rules, and the interaction between rules is less considered. In this study, a new ant colony classification mining algorithm based on pheromone attraction and exclusion (AntMiner(PAE)) is proposed, in which a new pheromone calculation method is designed and the search is guided by the new probability transfer formula. By contrast, the basic algorithm structure is modified, and the order of the iteration is adjusted. Thus, the problem of rule interaction is mitigated. AntMiner(PAE) can balance the relation of exploration and development of constructing rules, which can make the ants in the search process initially explore and develop in the later period. Our experiments, which use 12 publicly available data sets, show that the predictive accuracy obtained by AntMiner(PAE) implementing the proposed pheromone attraction and exclusion strategy is statistically significantly higher than the predictive accuracy of other rule induction classification algorithms, such as CN2, C4.5 rules, PSO/ACO2, AntMiner, and cAntMiner(PB). Furthermore, the rules discovered by AntMiner(PAE) are considerably simpler than those discovered by its counterparts. 
英文摘要: 

外单位作者单位: 

备注: 

关闭窗口 
