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The Deep Learning Era

ImageNet Classification Go-Playing

Conv layer Conv layers x 10 Conv layer % parallel softmax
Current board 25 feature planes 92 channels 384 channels k maps P
5 x 5 kernel 3 % 3 kernel 3 x 3 kernel
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Figure 3: Our network structure (d = 12, w = 384). The input is the current board situation (with
history information), the output is to predict next & moves.
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Academics in the Deep Learning Era

« Challenging time for academics...
« Deep learning depends heavily on GPUs and data
« Universities don’t possess a lot of GPUs and data

Analysis

AlphElGo Zero learns to play Go by simulating matches against itself in a procedure
referred to as self-play. The paper reports the following numbers:

At the quoted rate of $6.50/TPU/hr (as of March 2018), the whole venture would cost
$2,986,822 in TPUs alone to replicate. And that’s just the smaller of the two experiments
they report:

NASNet: Neural Architecture Search with Reinforcement Learning

Training details: The controller RNN is a two-layer LSTM with 35 hidden units on each layer.
It 1s trained with the ADAM optimizer (Kingma & Ba, 2015) with a learning rate of 0.0006. The
weights of the controller are initialized uniformly between -0.08 and 0.08. For the distributed train-
ing, we set the number of parameter server shards S’ to 20, the number of controller replicas K to
100 and the number of child replicas m to 8, which means there are 800 networks being trained on
800 GPUs concurrently at any time. Zopf & Le. ICLR 2017

2
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Academics in the Deep Learning Era

« Challenging time for academics...
« Deep learning depends heavily on GPUs and data
« Universities don’t possess a lot of GPUs and data
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cf. Peng et al. MegDet: A Large Mini-Batch Object Detector. CVPR 2018 3
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Deep Networks: Understandings and New Paradigms

« As academics, we choose a different route

Paradigm/Understanding > Performance

We want to study the deep
networks themselves

Extend our understanding
and propose new paradigms
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Roadmap for Today

Explaining

Predictions
Quantifying CNN on Unordered
Uncertainty Point Clouds

I\/IuIti-Target Trackin

& T T : [Memory DesignforJ
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Understanding Convolutional Networks (CNN)

conv-64
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Fooling a deep network(Szegedy et al. 2013)

Optimizing a delta from the image to maximize a class
prediction f.(x)

max fo(I + AI) — A]|Al]|?

Al Shark (93.89% confidence)
Giant Panda (99.32% confidence) e vy

+0.03

+0.03

(Szegedy et al. 2013, Goodfellow et al. 2014, Nguyen et al. 2015)



Fundamental Aspect of ML

« Machine learning works only on i.i.d. settings
» Testing data should be similar to training data

* No good result expected on adversarial images
since never trained on it

 CNN tends to give random Extrapolation
outputs with high confidence N T

These are no longer within the

input distribution! Inter-
S polation

Training examples
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[-GOS: Integrated-Gradient Optimized Saliency

Optimize for a mask that will mask an image to its
highly blurred version

Locate the smallest non-adversarial mask to reduce prediction
score

CNN Prediction: 99.6% Eft CNN Prediction: 14% Eft

a v
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Masking Optimization

I, is the image
M is the mask
f-(x) is the deep network

a’rg;[nin FC(IOaM) — fc(q)(l(),M)) +9(M)a

where g( ) 1||1—MH1+A2TV(M),

O(Io,M)=To &M+ 1o ® (1 — M),
0§M<1
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Avoiding Local Optima

Just using gradient ->
Easily falling to local optima

Try to get to global optima

Highly blurred image

= unconstrained

global optima (outputting
0 confidence)

We have constraints!
Masks need to be small
Low total variation on mask
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Integrated Gradient

Take gradients at many
locations on the line A->B

Use that as the descent
step

Average all '
the gradients!
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Comparing I-GOS with Other Visualizations

Jellyfish - o Coker spaniel
GradCam
RISE
I-GOS
GradCam
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CNN diagnosis: Generating Images from the
mask

Label Deletion Insertion
27: ‘Eft’
Predicted Class Probability 99.6% 14% 97%
Deletion or Insertion ratio — 6.1% 1.5%
Label Deletion Insertion

409: ‘Analog clock’

Predicted Class Probability
Deletion or Insertion ratio
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CNN diagnosis: Generating Images from the
mask

Label Original Image

Deletion Insertion

593: ‘Harmonica,
mouth organ,
harp, mouth harp’

Predicted Class Probability 99.9% 11.9% 81.8%
Deletion or Insertion ratio —— 3.1% 4.6%
Label Original Image Deletion Insertion

259: ‘Pomeranian’ e 8 % ik ﬁ

Predicted Class Probability 100% 4.8% 82.9%
Deletion or Insertion ratio e 3.4% 2.3%
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CNN diagnosis: Generating Images from the

mask

Label

80: ‘Black grouse’

Oriinal Imae

Deletion

Insertion

beacon light, pharos’

Predicted Class Probability 99.5% 99.7%
Deletion or Insertion ratio —— 2.7% 0.8%
Label Original Image Deletion Insertion
437: ‘Beacon,
lighthouse,

Predicted Class Probability

12.3%

78.1%

Deletion or Insertion ratio

0.8%

1.5%
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Uncertainty in Deep Learning

A deep network is almost always
overconfident in its prediction
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Uncertainty in Deep Learning

« How to correct this overconfidence on outliers?
- A Bayesian Idea:

p(y|X) = jp(ylx, W)q(W)dw

« Given a prior distribution p(W), learn the posterior
q(W) so that many models can be sampled

 Presumably, different models predict similarly on
inliers but differently on outliers

« Qutliers would have higher predictive entropy
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How to Get Multiple Models

e Train an Ensemble (zeiler & Fergus 2012,
Lakshminarayanan et al. 2016)

 Too slow

 MC-Dropout (Gal & Ghahramani 2016)
« Uses dropout to simulate an ensemble

« Multiplicative Normalizing Flow (MNF) (Louizos &
Welling, 2017)

« Use a normalizing flow to compute posterior
- Hard to scale
« Assume multiplicative Gaussian noise on weights

19
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Problem: Distribution Assumptions Too Restrictive

« We know too few distributions to tractably compute
priors/posteriors

« Only normal, exponential, etc.

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3

350
300
250
200
150
100

50

2 enoug
of deep network parameters!

Image cf. Nielsen Neural Networks and Deep Learning 2018 20
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Directly Generate a Neural Network?

 GANs are known to be good generators on arbitrary
distributions

 E.g. Images

e
V\
A 2 l AN
* S ] %,
" . (B Y
. 77 N
y »
2
2
Vo
P

. Can we use a GAN to geratea neural network?
« Given structure, generate all the weights

‘L' 3

Images cf. Karras et al. 2018, Brock et al. 2019 21
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A GAN Generated Neural Network?

—) Discriminator Network - | Predicted Labels
D-dimensional

noise vector

GAN: 1

‘i‘ - Generator Network

Generating
a Neural

Network: w

22
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A GAN Generated Neural Network?

C) Hurdle #2 ‘?
Hurdle #1

Discriminator Network - | Predicted Labels

D-dimensional
noise vector

GAN: 1

Deep Neural Network
= input layer idden layer I
B ‘ Generator Network
2 N 7. N 7 N 24

« Two big hurdles:
« Real data - Train 1,000 networks first? (APD, Wang et al. 2018)

E88

« Adversarial loss — Discriminator on network weights?
« No structure to utilize as in images

Image cf. O'Reilly 23
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Solution #1: Maximize Likelihood

« Assume unknown true parameter distribution 6* in a
parametric model, the KL-MLE equivalence is well
known:

minDy, [p(x, y169)|Ip(x, y16)]
< min [IEx,y [logp(x, y16*)] —Ey,y [logp(x, yIH)]]

& max .y [logp(y|x, 6)]

Using MLE is equivalent as minimizing
a “reconstruction error” for generating 0

24
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Solution #2: Latent Space Discriminator

« Wasserstein autoencoder (Tolstikhin et al. 2018)
justified the validity of latent space

discriminator

« Instead of a discriminator from data (images), train a
discriminator from the latent codes

« Adopting this solved the discriminator issue

« Latent space is much lower dimensional than network
parameters

25
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Training Issue:

« We found the initial architecture hard to train
« Generator has to figure out:

« Next layer’s input is prev layer
output

* This is not easy
« It leads to mode collapse
 Only 1 good network can be found

26
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Novel Mixer

* We add a mixer to “mix” the independent Gaussian
noise

 Different generators have dependent info to work on

[ o e

Final Architecture:

Mixer Q@  Qlgls)
\ |
oy
. __:_: Target
:_: Network
I :_ 7
s ~§ // Iqm

p~P Discriminator
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Training Illustration

Initial Sampling
Distribution

Distribution of
Near-Optimal
Network Weights

28
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Mixer and Discriminator Encourage Diversity

« Accuracy is about the same in any case
« No mixer = almost no diversity
* No discriminator = less diversity

HyperGAN Accuracy - CIFAR-10 HyperGAN Diversity - CIFAR-10
5

0.7

0.6 4 I, | —— Mormal
— ‘ ‘ —— No Discriminator
B ' —— No Mixer
= 0.5
¢ f g’ | |
= = ]
2 04 = 1 1'" \u
o 3 2 . | ldo ' | hl u.lll Loy
E 0.3 —— No Mixer | || Fl‘ .
= / —— No Discriminator ‘

02 — e ! B | RN

f A b
0.1 T 0 e = | "
0 20 40 60 80 [I.'l 20 4I0 60 80

Training Step (epochs) Training Step (epochs)
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Experiments: Classification Accuracy

« Baselines: 100 network ensembles from APD, MNF
(note: small network since MNF doesn’t scale)

Method MNIST MNIST 5000 CIFAR-5 CIFAR-10 CIFAR-10 5000
I network 98.64 96.69 8450  76.32 76.31
Snetworks  98.75 97.24 85.51 76.84 76.41
10 networks ~ 99.22 97.33 85.54  71.52 77.12
100 networks ~ 99.31 97.71 85.81 7171 77.38
APD 98.61 96.35 83.21 75.62 75.13
MNF 99.30 97.52 84.00  76.71 76.88
MC Dropout ~ 98.73 95.58 84.00 7275 70.10
Diversity helps!

MNIST/CIFAR 5000: train on 5k example subset
CIFAR-5: 5 classes out of CIFAR-10 20
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Experiments: Outlier Detection

* Train on MNIST -> Predict on notMNIST (characters)
 Train on CIFAR 5 -> Predict on other 5 classes

Empirical CDF of predictive entropy on notMNIST Empirical CDF of predictive entropy on CIFAR-5
1.0 1.0 -
. / -
0.6 1 —— HyperGAN 10 models 0.6 1
—— HyperGAN 100 models
——- HyperGAN 100 models inlier —— HyperGAN 10 models
0.4 —— 10 models L2 0.4 - —— HyperGAN 100 models
—— MNF === HyperGAN 100 models inlier
—— Dropout —— 10 models L2
0.2 —— APD 0.2 —— WINF
—— dropout
— APD
0.0 0.0
T T T T T T T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Entropy Entropy

31
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Outlier Examples

NotMNIST low entropy examples:

L AL IC

MNIST high entropy examples:

snlélilsléil19

32
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Adversarial Examples

* Problem Setup: Shifting Classifier:
« Adversaries fool one ensemble
« HyperGAN generates a new ensemble of same size

Evaluate predictive entropy: higher means less fooled

=@= hyperl0 =@ hyper5 =@ MNF —8— hyperl000 —&— hyper5  —#— MNF
== hyperl00 =@= ensl0 == APD =8— hyperl00 -8 enslo —8— APD
=@=_hyperl000 == ens> == Dropout —a— hyperl0 -8~ ens5 —u— Dropout
2.00 ; /0—0
2.0 “/
L —_ >
175 j:—--"'"_'._—c/,__.—o—-/‘n
—/
— | 7
1.50
---=-/
1.25
> — >
[=9 —
£ 100 v L ——T—— "%
=
(]
0.75 ———— —— e
- —
T A = - ——— -
050 -
0.25
0.00
T
0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 10
FGSM perturbation size - epsilon PGD perturbation size - epsilon

33



COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Deep Learning in 3D Vision

 Processing 3D (laser scan, RGB-D) data is important
« Many robotic applications have sensors to directly collect 3D data

« Radar, sonar applications have direct 3D data

« But Deep CNN is prohibitively expensive in 3D
« Some work utilizes efficient data structures (e.g. octrees) to speed up

« But still not enough

Rasterized Deep CNN:
Every voxel needs to be processed

d

W. Wu, Z. Qi, FL, arXiv:1811.07246 34
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Point Cloud Data

« Directly representing each point on a surface

« Avoid representing unoccupied points
« Can be economical and extremely accurate
 Difficulty: Irregular data is hard to process!

« Goal: Build CNN-like networks on point clouds directly

W. Wu, Z. Qi, FL, arXiv:1811.07246 .
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Prior Work on Point Cloud Networks

« PointNet (Qi et al. 2017)

Using max-pooling on points to build a network on point cloud
« PointNet++ (Qi et al. 2017)

PointNet with a hierarchical structure and local neighborhoods
« Graph Convolution (Simonovsky et al. 2017)

Treat the point cloud as a graph and perform graph convolution

« SPLATNet (Su et al. 2018), SpiderCNN (Xu et al. 2018),
PointCNN (Li et al. 2018)

Approaches to approximate CNN on point cloud

None of them are real convolutions!

36
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Convolutions on non-regular neighborhoods

« Directly running CNN on point cloud data

« There is no fixed grid, hence the normal CNN formula does not work

Conventional (Rasterized) CNN:

COTLU(W, X)ijk = 2 WAiAjAkX(i + Al,_] + A_], k + Ak)
(Ai,Aj,Ak)EG

Approximates the Continuous Domain CNN:

Conv(W,X)jx = j W (A, Aj, Ak) X(i + Ai, j + Aj, k + Ak) dAi dAj dAk

AiLAj,Ak .

Convolution Function

The Idea: Approximate the convolution function with a neural network!

W. Wu, Z. Qi, FL, arXiv:1811.07246 37
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PointConv

« PointConv approximates the continuous convolution
operator by: 1-hidden layer

neural net
PointConv(W,X); = 2 FTONYAY)) W (Ai, Aj, Ak)X (i + AL, j + Aj, k + Ak)
(Ai,Aj,Ak)EG
KDE + 1-hidden layer
neural net

o i 2
P1 . "

‘ 2 6
/ \ 0 5 p
) 3 [,
° A 5
= | peaen : gl

(a)

W. Wu, Z. Qi, FL, arXiv:1811.07246 38
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PointConv Weight Architecture

« Work on k nearest neighbors of each point

PointConv:

K X (Cinx Caut)

Element-wise

) product + Sum
Coordinates

Output
I peatures

1 X Cout

K x3

Tile

Input Features

K X Cip, K X (Cinx Cout)

W. Wu, Z. Qi, FL, arXiv:1811.07246 39
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PointConv Entire Architecture

Compute Weight

—_—_————— e e — —

K X (Cinx Cout) \1
Ww: |
> |
(P1=Po) 5 d ‘:
Plocal: (pz:Po) ____________________________________
Pe—p0) "-' oo
KPXI;’ ,—L F(mt:1 X Cout
. K X (Cin>< Cout)
til -
Compute Inverse Density Scale fi | . d
. f2 KX Cp, K X (Cin X Conz) @ :element-wise product
m- :
fi @ :summation
K X Cip,

W. Wu, Z. Qi, FL, arXiv:1811.07246 20
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Efficient Computation

(P1—Po)

PP
Plocal- ( 2. o

(Px—Po)

Kx3

= ® : matrix multiplication :__Jl modified part from Fig. 3(b)

K x Ci, @ : element-wise product

W. Wu, Z. Qi, FL, arXiv:1811.07246 1
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Convolution and Deconvolution

« Both downsampling and upsampling are easy for point
clouds
« Hence both convolution and deconvolution can be done

« Easily mimic a U-Net architecture for segmentation with PointConv,
downsampling and upsampling layers

ngXcy i

Ny, X ¢y ny X (ca+¢3) npXcy

ny X ¢ X
Tl.l X (Cl + C4) Tll X C§ nl m

D 3D coordinates DD Features D Feature encode

Feature decode/PointDeconv Q Interpolation . PointConv —--» Skip links

W. Wu, Z. Qi, FL, arXiv:1811.07246 45
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PointConv Results

« 5-layer PointConv matching 7-layer AlexNet on CIFAR-10

* Proving t_hat PointConv is real PointConv:25,64-1024
convolution
max_pool
Accuracy PointConv:25,192-256
SpiderCNN (Xu et al. 2018) | 84.07 max_pool
PointCNN (Li et al. 2018) 80.22 PointConv:9,384-64
Image Convolution 88.52 PointConv:9,384-64
PointConv 5-layer 89.13 PointConv:9,256-64
AlexNet 89.00 max_pool
(Krizhevsky et al. 2012) fc:192
fc:64

W. Wu, Z. Qi, FL, arXiv:1811.07246 43
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PointConv Results on ModelNet, ShapeNet and
ScanNet

CAD Model: ModelNet40 CAD Model: ShapeNet
Table 1. ModelNet40 Classification Accuracy Table 2. Results on ShapeNet part dataset. Class avg. is the
mean IoU averaged across all object categories, and inctance avg.
Method | Input | Accuracy(%) is the mean IoU across all objects.
Subvolume [25] | voxels 89.2 | class avg. instance avg.

K4 ECC ["ll(] » %azihs . g?g SSCNN [17] 82.0 84.7
“Network [10] points : Kd-net [16] 77.4 82.3
POlntNCt [._4] 1024 pOlntS 89.2 PointNet [24] 80.4 837
PointNet++ [260] | 1024 points 90.2 PointNet++[26] 81.9 85 1
PointNet++ [26] | 5000 points+normal 91.9 SpiderCNN [41] 82 4 853
SpiderCNN [41] | 1024 points+normal 92.4 SPLATNetsp [23] 82.0 84.6
PointConv | 1024 points+normal | 92.5 PointConv | 828 85.7

Table 3. Semantic Scene Segmentation results on ScanNet

Method mloU(%)
Realistic Indoor ScanNet [5] 30.6
SPLAT Net [33 39.3
Tangent Convolutions [35] 43.8
PointConv 55.6

44
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Today'’s Talk

« Understanding and New Designs on CNNs

 Multi-Target Tracking with bilinear LSTM
« Novel LSTM model coming from studies on tracking

C. Kim, FL, J. Rehg. ECCV 2018 45
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Multi-Target Tracking by Detection

Link person detections in each frame into tracks

Search space reduced by using a person detector

46
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Multi-Target Tracking by Detection

Link person detections in each frame into tracks

Search space reduced by using a person detector

47



COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Multi-Target Tracking Illustration
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The Essence of Tracking

Appearance Cues
« People (targets) look different, they wear different clothes
Motion Cues

« People (targets) move in a smooth/piecewise-smooth
manner 49
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Appearance Cues

50
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Multiple Appearances + Motion

Successful tracking algorithms combine
appearance and motion cues

Each object can have many appearances,

this needs to be handled too
51
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Goal: End-to-End Training

 Interestingly, tracking is rarely trained end-to-end

 There is often an appearance model that is updated online
 e.g. MHT-DAM [Kim et al. 2015], STAM [Chu et al. 2017]

« And then a motion model that is separately updated
« Most likely, a heuristic motion model (linear, constant velocity)
« Or Kalman filter (e.g. [Kim et al. 2015])

« And then post-processing

« There should be a few benefits for end-to-end training
« Using more complex nonlinear motion models

 Have the motion and appearance models better work
together

52
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Previous attempts on using a recurrent model

« A standard approach to train on a video sequence
would be a convolution + recurrent model

« Tried a couple of times (Milan et al. 2017, Sadeghian et al.

2017) with some (limited) success
Belong/Not Belong

to the Track

1)
LST™ ?@-ﬁ-@-

1 LI L]

= mi
2 113

CNN

53
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Interesting Phenomenon on a Recurrent Model

< 30 +
=
@) /
= 20 == MOT Validation Set |-

80 | 2 3 4 > 6 ! 8 v 10
<
575+ -
p= m— Stanford Drone Dataset

70 ] ] ] | ]

1 2 3 4 5 6 7 8 9 10
Sequence Length (frame)
(b)

Using longer sequences to train the
LSTM does not seem to bring any benefit!

(image cf. Sadeghian et al. 2017) 54
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Reflect about this Longer Training Sequence issue:

Appearance Part Motion Part

Multiple Appearances! Single Motion Trajectory!

Longer sequence in training Longer sequence may not
should be beneficial be beneficial

55
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Longer Training Sequence

Appearance Part
Hypothesis:

LSTM in multi-target
tracking may not be
modeling multiple
appearances properly

Multiple Appearances!

Longer sequence in training
should be beneficial

56
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The Dilemma of the LSTM Memory

Why is there not an option of:
put the memory aside?

/
THAT IS THE QUESTION

57
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In the Quest for a New LSTM

 We check a non-deep appearance modeling approach

« Recursive least squares

« Used in several work, e.g. DCF/KCF (Henriques et al.
2012), SPT (Li et al. 2013), MHT-DAM (Kim et al. 2015)

As well as being a classic tracking approach in robotics

Global optimal online appearance modeling framework

Appearance model is a classifier/regressor

Capable of modeling multiple appearances

58
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How does it work

« Tracker as a regressor

« Appearance model: classifies any new appearance to
object/not object

we = argmin ||w "xo,e = Youl|* + A w]|?

\ (Soft) Labels

Appearance Features €.g- Jaccard index

(e.g. CNN) from
Positive and Negative
Examples

Negative (label = 0)

Positive (label = 1)

59
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Testing and recursive training

 Test model on all detections:

60
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Testing and recursive training

 Decide which one is matched to the track

61
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Testing and recursive training

« Generate training examples for time t+1
« Solve for w;,,

Wiy = arg mvgn 1w T x0.641 — Yo:e41 112 + AlIw]|?
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(Some of the) good stuff with least squares

Solution of w:
w=X"X+AD"X"y=(H+ D¢

H, = X{. (1k-1)X (1:k-1) T X(R)X(k) 1) Each frame is separable!
xT 2) Inversion does not depend
Ck = Auk-1)Y@:k-1) + X(k)Y(k) on number of targets (tracks)

 In DCF/KCF (Henriquez et al. 2012, 2014), more
computational savings with Fourier domain
transformations

 In MHT-DAM (Kim et al. 2015), this is used to learn a
different appearance model for each branch in an MHT e
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The “Recurrent Model” Version of Least Squares

Problem: Storing d X d matrix H in RNN
IS too memory-consuming

: Hy === H, === H; w===) H;,
Recursive
Least Squares C, == ¢ == ( == (s
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Low-rank Approximation

 Go back to the solution formula

w=X"X+AD"X"y=(H+ D¢

r r

wix =~ z c"h;h] x = ulhT

t=1 Feature input
(e.g. CNN)

Track-specific Memory
layer

The difference between this and a normal RNN/LSTM update?
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Bilinear LSTM

Adopt multi-modality in LSTM
1

Each column can be thought Matrix-vector multiplication
of as one modality

Reshape f
LI
S
1 1
1 ] 1}

Trackuptot—1 Detection at t

C. Kim, FL, J. Rehg. ECCV 2018
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Bilinear LSTM Model Study

« We tried 3 models for
 Appearance LSTM
« Motion LSTM

: |
% Matrix-vector multiplication Concatenation
LI
resape 1 t ] S
1 1 1
S < EED
1 1 N 1 1
1 1T 1 1 1T
Trackuptot—1 Detection at t Trackuptot—1 Detection at Trackupto t
(a) (b) (c)
. Concatenate
Bilinear LSTM Normal LSTM

Memory and Input

67



COLLEGE OF ENGINEERING Electrical Engineering & Computer Science

Experiment Details

MOT-17 dataset (without 17-09 and 17-10) + ETH +
PETS + TUD + TownCentre + KITTI16 + KITTI19 as
training

« MOT-17-09, MOT-17-10 as validation
« Faster R-CNN detector with ResNet 50 head
 Public Detections
Soft-max Soft-max Soft-max
Matrix-vector Multiplication-relu 8 FC-relu 512 FC-relu 512
. . . . LSTM 2048
Reshape 8 x 256 || Reshape 256 x 1 Concatenation 2048 + 256
FC-relu 256
LSTM 2048 LSTM 2048 -
ResNet-50 2048
FC-relu 256 || FC-relu 256 | | FC-relu 256 || FC-relu 256 | | Tnput at ¢ 128 x 64 x 3
ResNet-50 2048 || ResNeth0 2048 | | ResNet-50 2048 || ResNet50 2048
Input at t —1 128 x 64 x 3 || Input at £ 128 x 64 x 3 Input at + —1 128 x 64 x 3 || Input at £ 128 x 64 x 3

(a) (b) (c)
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Comparison between different appearance LSTMs

 Bilinear LSTM significantly better than other LSTM
variants
« ID switches almost halved

« Longer training sequence make a difference
Nmax MOTA IDF1 IDS

LSTM MOTA IDF1 IDS State dim. MOTA IDF1 IDS 10 5196 54.36 271
Bilinear 52.33 59.07 233 512 52.14 56.66 283 20 5227 58.38 228
Baselinel 50.43 51.28 412 1024 52.36 55.85 222 40  52.33 59.07 233
Baseline2 50.97 51.49 462 2048 52.33 59.07 233 80 5232 57.21 239

160  52.41 55.19 222

Table 4: Ablation Study for Appearance Gating Networks. Baselinel and Baseline2
are the networks shown in Table 2 (b) and (c) resepectively. (Left) State dim. =
2048, Nmax = 40 (Middle) LSTM: Bilinear, Nmax = 40, (Right) LSTM: Bilinear,
State dim. = 2048
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Comparison between different motion LSTMs

 Bilinear LSTM does not work as well as regular LSTM in
motion LSTM

« Maybe the single modality of motion LSTM makes regular
LSTM more suitable

Numax MOTA IDF1 IDS
20 39.76 28.50 206

LSTM MOTA IDF1 IDS State dim. MOTA IDF1 IDS

Bilinear 39.68 41.22 226 64 40.14 44.11 106
Baselinel 38.90 19.38 449 128 40.16 44.26 97 ;18 ig}g‘ jg;; }82
Baseline2 40.14 44.11 106 256 40.15 44.48 103 ' )

160  40.20 45.15 91

Table 2: Ablation Study for Motion Gating Networks (Left) State dim. = 64, Nmax =
40 (Middle) LSTM:Baseline2, Nyax = 40, (Right) LSTM:Baseline2, State dim. = 64
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Final MOT-17 Result Videos
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Final MOT-17 Result Videos

3 m " )

MHT-bLSTM

C. Kim, FL, J. Rehg. ECCV 2018
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Final MOT Results

 Showing all the top non-anonymous results on MOT-17
(as of 7/31/18), sorted by IDF1:

Jragker Avg.Rank MOTA  #IRE1 MI M. FE EN 1R 3%, Frag Hz  Retector
13.5 51.8 112 547 234%  379% = 33212 236,772 1,834 @ig) 2,739 ur2) 0.7

TCEWT-02141-2018
14.6 51.2 1145 545 209%  37.0% 25937 247,822 1,802 21) 2,984 s22) 1.8

M. Heuper, 5. Tang, Y. Zhongjie, B. Andres, T. Brox, B. Schiele. A multi-cut formulation far joint segmentation and fracking of multiple objects. In arXiv preprint arXiv:1607.06317, 2018,

15.8 50.9 =i1s 527  17.5% 35.7% 24089 250,768 2,474 (425 5317 (g7 18.3

C. Long, A. Haizhou, Z. Zijjie, 5. Chong. Real-fime Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification. In ICME, 2018.

20.5 47.5 zs 519 182% 41.7% 25,981 268,042 2,069 o4 3,124 (se.5) 1.9

C. Kim, F. Li, J. Rehg. Multi-object Tracking with Meural Gating Using Bilinear LSTM. In ECCV, 2013.

16.4 50.0 130 51.3 2186% 36.3% 32,279 247 297 2264 403 3,260 (s2.0) 0.6 Public

J. Chen, H. Sheng, . Zhang. Z. Xiong. Enhancing Detection Model for Multiple Hypothesis Tracking. In BMTT-PETS CVWPRw, 2017.

PHR..GSDLAT 228 480 1as 496 171%  356% 23199 265954 3,998 gss) 8,886 (121 6.7
BeSt 17. [0 Z. Fu, P. Feng, F. Angelini, J. Chambers, S. Nagui. Particle PHD Filter based Multiple Human Tracking using Online Group-Structured Dictionary Leaming. In IEEE Access, 2013.
in  Ewr 16.4 513 sra 476 214%  352% 24101 247921 2,648 (a72) 4,279 53 02 Public
MOT 26. El R. Henschel, L. Leal-Taixé, D. Cremers, B. Resenhahn. Fusion of Head and Full-Sody Detectors for Multi-Object Tracking. In Trajnet CYPRW, 2018,
MHT..RAM 18.0 507 a7 472 208%  369% 22875 252889 2,314 @10) 2,865 s1.0) 09 P

C. Kim, F. Li, A. Ciptadi, J. Rehg. Multiple Hypothesis Tracking Revisited. In ICCV, 2015.

C. Kim, FL, J. Rehg. ECCV 2018 s
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Conclusion: Bilinear LSTM

 We proposed Bilinear LSTM as an approach to learn
long-term appearance models in tracking

« Experiments show that it significantly outperforms
regular LSTM, especially in terms of identity switches

« Bilinear LSTM seems capable of learning appearance model
with multiple different appearances, where traditional
LSTM struggles

 We hope that this methodology can be potentially
useful in other scenarios beyond tracking
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Other Items

« Recruiting: I'm recruiting for students and postdocs:
«  Common Sense Reasoning in Computer Vision

« Uncertainty in Machine Learning
« With application in ML Fairness

« Other research that may be interesting:
« CNN generalization theory (ICLR 2017)

« Loss function for heatmap regression in face alignment/ human pose
estimation (ICCV 2019)

 Boundary flow
« CNN on underwater imaging sonar
 Open-category learning
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Thank You!

Fuxin Li: http://web.engr.oregonstate.edu/~lif
Email: lif@oregonstate.edu

2077 Kelley Engineering Center,
Oregon State University
Corvallis OR 97331

I would like to thank my collaborators who contributed to the work in these slides:

Georgia Tech:
Chanho Kim, James M. Rehg

Oregon State University:
Neale Ratzlaff, Wenxuan Wu, Jialin Yuan, Zhongang Qi, Saeed Khorram, Xin Li
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