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The Deep Learning Era
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ImageNet Classification Go-Playing

Natural Language Processing Speech Recognition



Academics in the Deep Learning Era

• Challenging time for academics…

• Deep learning depends heavily on GPUs and data

• Universities don’t possess a lot of GPUs and data

2

NASNet: Neural Architecture Search with Reinforcement Learning

Zopf & Le. ICLR 2017



Academics in the Deep Learning Era

• Challenging time for academics…

• Deep learning depends heavily on GPUs and data

• Universities don’t possess a lot of GPUs and data

3cf. Peng et al. MegDet: A Large Mini-Batch Object Detector. CVPR 2018

8 GPUs
128 GPUs



Deep Networks: Understandings and New Paradigms

• As academics, we choose a different route
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Paradigm/Understanding > Performance

We want to study the deep 
networks themselves

Extend our understanding
and propose new paradigms



Roadmap for Today
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Understanding Convolutional Networks (CNN)

224 x 224

224 x 224

112 x 112

56 x 56

28 x 28
14 x 14

7 x 7

Airplane Dog Car SUV Sign Pole…

(Simonyan and Zisserman 2014)



Fooling a deep network(Szegedy et al. 2013)

Optimizing a delta from the image to maximize a class 
prediction 𝑓𝑐(𝑥)

m𝑎𝑥
Δ𝐼

𝑓𝑐 𝐼 + Δ𝐼 − 𝜆||Δ𝐼||2

(Szegedy et al. 2013, Goodfellow et al. 2014, Nguyen et al. 2015)

Goldfish (95.15% confidence)

Shark (93.89% confidence)

=

=
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Giant Panda (99.32% confidence)
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Fundamental Aspect of ML

• Machine learning works only on i.i.d. settings

• Testing data should be similar to training data

• No good result expected on adversarial images 
since never trained on it

• CNN tends to give random 
outputs with high confidence

Extrapolation 
Area

Inter-
polation

Training examples

These are no longer within the
input distribution!



I-GOS: Integrated-Gradient Optimized Saliency

Optimize for a mask that will mask an image to its 
highly blurred version

Locate the smallest non-adversarial mask to reduce prediction 
score

Mask

CNN Prediction: 99.6% Eft CNN Prediction: 14% Eft



Masking Optimization

𝐼0 is the image

M is the mask

𝑓𝑐(𝑥) is the deep network



Avoiding Local Optima

Just using gradient -> 
Easily falling to local optima

Try to get to global optima

Highly blurred image
= unconstrained
global optima (outputting
0 confidence)

We have constraints!

Masks need to be small

Low total variation on mask



Integrated Gradient

Take gradients at many
locations on the line A->B

Use that as the descent
step

Average all 
the gradients!



Comparing I-GOS with Other Visualizations



CNN diagnosis: Generating Images from the 
mask



CNN diagnosis: Generating Images from the 
mask



CNN diagnosis: Generating Images from the 
mask



Uncertainty in Deep Learning

A deep network is almost always 

overconfident in its prediction

17
Images cf. Louizos & Welling 2017



Uncertainty in Deep Learning

• How to correct this overconfidence on outliers?
• A Bayesian Idea:

• Given a prior distribution 𝑝(𝑊), learn the posterior 
𝑞(𝑊) so that many models can be sampled

• Presumably, different models predict similarly on 
inliers but differently on outliers

• Outliers would have higher predictive entropy

𝒑 𝒚 𝑿 = න𝒑 𝒚 𝒙,𝑾 𝒒 𝑾 𝒅𝑾



How to Get Multiple Models

• Train an Ensemble (Zeiler & Fergus 2012, 

Lakshminarayanan et al. 2016)

• Too slow

• MC-Dropout (Gal & Ghahramani 2016)

• Uses dropout to simulate an ensemble

• Multiplicative Normalizing Flow (MNF) (Louizos & 

Welling, 2017)

• Use a normalizing flow to compute posterior

• Hard to scale

• Assume multiplicative Gaussian noise on weights
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Problem: Distribution Assumptions Too Restrictive

• We know too few distributions to tractably compute 
priors/posteriors

• Only normal, exponential, etc.

• Most are not diverse enough to model the entire space 
of deep network parameters!

20Image cf. Nielsen Neural Networks and Deep Learning 2018



Directly Generate a Neural Network?

• GANs are known to be good generators on arbitrary 
distributions

• E.g. Images

• Can we use a GAN to generate a neural network?

• Given structure, generate all the weights

21Images cf. Karras et al. 2018, Brock et al. 2019



A GAN Generated Neural Network?

22

GAN:

Generating

a Neural

Network:



A GAN Generated Neural Network?

• Two big hurdles:

• Real data – Train 1,000 networks first? (APD, Wang et al. 2018)

• Adversarial loss – Discriminator on network weights?

• No structure to utilize as in images

23Image cf. O’Reilly

GAN:

Hurdle #1
Hurdle #2



Solution #1: Maximize Likelihood

• Assume unknown true parameter distribution 𝜃∗ in a 
parametric model, the KL-MLE equivalence is well 
known:
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min
𝜃
𝐷𝐾𝐿 𝑝(𝑥, 𝑦|𝜃

∗)||𝑝(𝑥, 𝑦|𝜃)

֞min
𝜃

𝔼𝑥,𝑦 log𝑝(𝑥, 𝑦|𝜃∗) −𝔼𝑥,𝑦 log𝑝(𝑥, 𝑦|𝜃)

֞max
𝜃

𝔼𝑥,𝑦 log𝑝(𝑦|𝑥, 𝜃)

Using MLE is equivalent as minimizing 
a “reconstruction error” for generating 𝜽



Solution #2: Latent Space Discriminator

• Wasserstein autoencoder (Tolstikhin et al. 2018) 

justified the validity of latent space 
discriminator
• Instead of a discriminator from data (images), train a 

discriminator from the latent codes

• Adopting this solved the discriminator issue

• Latent space is much lower dimensional than network 
parameters

25



Training Issue:

• We found the initial architecture hard to train

• Generator has to figure out:

• Next layer’s input is prev layer
output

• This is not easy

• It leads to mode collapse

• Only 1 good network can be found

26



Novel Mixer
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• We add a mixer to “mix” the independent Gaussian 

noise

• Different generators have dependent info to work on

Final Architecture:



Training Illustration

28

Distribution of 
Near-Optimal 
Network Weights

Initial Sampling 
Distribution



Mixer and Discriminator Encourage Diversity

• Accuracy is about the same in any case

• No mixer = almost no diversity

• No discriminator = less diversity

29



Experiments: Classification Accuracy

• Baselines: 100 network ensembles from APD, MNF 
(note: small network since MNF doesn’t scale)

30

MNIST/CIFAR 5000: train on 5k example subset

CIFAR-5: 5 classes out of CIFAR-10

Diversity helps!



Experiments: Outlier Detection

• Train on MNIST -> Predict on notMNIST (characters)

• Train on CIFAR 5 -> Predict on other 5 classes

31



Outlier Examples

32

notMNIST low entropy examples:

MNIST high entropy examples:



Adversarial Examples

• Problem Setup: Shifting Classifier:

• Adversaries fool one ensemble

• HyperGAN generates a new ensemble of same size

33

Evaluate predictive entropy: higher means less fooled



Deep Learning in 3D Vision

• Processing 3D (laser scan, RGB-D) data is important

• Many robotic applications have sensors to directly collect 3D data 

• Radar, sonar applications have direct 3D data

• But Deep CNN is prohibitively expensive in 3D

• Some work utilizes efficient data structures (e.g. octrees) to speed up

• But still not enough

34

Rasterized Deep CNN:
Every voxel needs to be processed

W. Wu, Z. Qi, FL, arXiv:1811.07246



Point Cloud Data

• Directly representing each point on a surface

• Avoid representing unoccupied points

• Can be economical and extremely accurate

• Difficulty: Irregular data is hard to process!

• Goal: Build CNN-like networks on point clouds directly

35W. Wu, Z. Qi, FL, arXiv:1811.07246



Prior Work on Point Cloud Networks

• PointNet (Qi et al. 2017)

• Using max-pooling on points to build a network on point cloud

• PointNet++ (Qi et al. 2017)

• PointNet with a hierarchical structure and local neighborhoods

• Graph Convolution (Simonovsky et al. 2017)

• Treat the point cloud as a graph and perform graph convolution

• SPLATNet (Su et al. 2018), SpiderCNN (Xu et al. 2018), 
PointCNN (Li et al. 2018)

• Approaches to approximate CNN on point cloud

• None of them are real convolutions!

36



Convolutions on non-regular neighborhoods

• Directly running CNN on point cloud data

• There is no fixed grid, hence the normal CNN formula does not work

37

𝐶𝑜𝑛𝑣 𝑊,𝑋 𝑖𝑗𝑘 = 

Δ𝑖,Δ𝑗,Δ𝑘 ∈𝐺

𝑊Δ𝑖Δ𝑗Δ𝑘𝑋(𝑖 + Δ𝑖, 𝑗 + Δ𝑗, 𝑘 + Δ𝑘)

Conventional (Rasterized) CNN:

Approximates the Continuous Domain CNN:

𝐶𝑜𝑛𝑣 𝑊,𝑋 𝑖𝑗𝑘 = න
Δ𝑖,Δ𝑗,Δ𝑘

𝑊 Δ𝑖, Δ𝑗, Δ𝑘 𝑋 𝑖 + Δ𝑖, 𝑗 + Δ𝑗, 𝑘 + Δ𝑘 𝑑Δ𝑖 𝑑Δ𝑗 𝑑Δ𝑘

Convolution Function

The Idea: Approximate the convolution function with a neural network!

W. Wu, Z. Qi, FL, arXiv:1811.07246



PointConv

• PointConv approximates the continuous convolution 
operator by:
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𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣 𝑊,𝑋 𝑖𝑗𝑘 = 

Δ𝑖,Δ𝑗,Δ𝑘 ∈𝐺

1

𝑑 Δ𝑖, Δ𝑗, Δ𝑘
𝑊(Δ𝑖, Δ𝑗, Δ𝑘)𝑋(𝑖 + Δ𝑖, 𝑗 + Δ𝑗, 𝑘 + Δ𝑘)

KDE + 1-hidden layer
neural net

1-hidden layer
neural net

W. Wu, Z. Qi, FL, arXiv:1811.07246



PointConv Weight Architecture

• Work on k nearest neighbors of each point

39W. Wu, Z. Qi, FL, arXiv:1811.07246

Coordinates

Input Features

Output
Features



PointConv Entire Architecture

40W. Wu, Z. Qi, FL, arXiv:1811.07246



Efficient Computation

41W. Wu, Z. Qi, FL, arXiv:1811.07246



Convolution and Deconvolution

• Both downsampling and upsampling are easy for point 
clouds

• Hence both convolution and deconvolution can be done

• Easily mimic a U-Net architecture for segmentation with PointConv, 
downsampling and upsampling layers

42W. Wu, Z. Qi, FL, arXiv:1811.07246



PointConv Results

• 5-layer PointConv matching 7-layer AlexNet on CIFAR-10

• Proving that PointConv is real
convolution

43

PointConv:25,64-1024

PointConv:9,384-64

fc:192

fc:64

PointConv:25,192-256

PointConv:9,384-64

PointConv:9,256-64

max_pool

max_pool

max_pool

Accuracy

SpiderCNN (Xu et al. 2018) 84.07

PointCNN (Li et al. 2018) 80.22

Image Convolution 88.52

PointConv 5-layer 89.13

AlexNet
(Krizhevsky et al. 2012)

89.00

W. Wu, Z. Qi, FL, arXiv:1811.07246



PointConv Results on ModelNet, ShapeNet and 
ScanNet

44

Realistic Indoor 
Data: ScanNet

CAD Model: ModelNet40 CAD Model: ShapeNet



Today’s Talk

• Understanding and New Designs on CNNs

• Multi-Target Tracking with bilinear LSTM

• Novel LSTM model coming from studies on tracking

45C. Kim, FL, J. Rehg. ECCV 2018



Multi-Target Tracking by Detection

46

Frame 1 Frame 2

Frame 3 Frame 4

Link person detections in each frame into tracks

Search space reduced by using a person detector



Link person detections in each frame into tracks

Search space reduced by using a person detector

Multi-Target Tracking by Detection

47

1

11

1
2

22

2

3

33

3

Frame 1 Frame 2

Frame 3 Frame 4



Multi-Target Tracking Illustration

48



The Essence of Tracking

Appearance Cues

• People (targets) look different, they wear different clothes

Motion Cues

• People (targets) move in a smooth/piecewise-smooth 
manner 49



Appearance Cues

50

Identity (ID) Switch!



Multiple Appearances + Motion

Successful tracking algorithms combine 
appearance and motion cues

Each object can have many appearances, 
this needs to be handled too

51



Goal: End-to-End Training

• Interestingly, tracking is rarely trained end-to-end

• There is often an appearance model that is updated online

• e.g. MHT-DAM [Kim et al. 2015], STAM [Chu et al. 2017]

• And then a motion model that is separately updated

• Most likely, a heuristic motion model (linear, constant velocity)

• Or Kalman filter (e.g. [Kim et al. 2015])

• And then post-processing

• There should be a few benefits for end-to-end training

• Using more complex nonlinear motion models

• Have the motion and appearance models better work 
together

52



Previous attempts on using a recurrent model

• A standard approach to train on a video sequence 
would be a convolution + recurrent model

• Tried a couple of times (Milan et al. 2017, Sadeghian et al. 
2017) with some (limited) success

53

LSTM

CNN

Belong/Not Belong
to the Track

t=1 t=T t=T+1t=2 …

…



Interesting Phenomenon on a Recurrent Model
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Using longer sequences to train the 
LSTM does not seem to bring any benefit!

(image cf. Sadeghian et al. 2017)



Reflect about this Longer Training Sequence issue:

55

Longer sequence in training
should be beneficial

Multiple Appearances!

Appearance Part Motion Part

Single Motion Trajectory!

Longer sequence may not
be beneficial



Longer Training Sequence

56

Longer sequence in training
should be beneficial

Multiple Appearances!

Appearance Part

Hypothesis:

LSTM in multi-target 
tracking may not be 
modeling multiple 

appearances properly



The Dilemma of the LSTM Memory

57

𝑐𝑡−1

𝑀𝑒𝑚𝑜𝑟𝑦 𝑥𝑡

𝑥𝑡

LSTM

Why is there not an option of:
put the memory aside?



In the Quest for a New LSTM

• We check a non-deep appearance modeling approach

• Recursive least squares

• Used in several work, e.g. DCF/KCF (Henriques et al. 
2012), SPT (Li et al. 2013), MHT-DAM (Kim et al. 2015)

• As well as being a classic tracking approach in robotics

• Global optimal online appearance modeling framework

• Appearance model is a classifier/regressor

• Capable of modeling multiple appearances

58



How does it work

• Tracker as a regressor

• Appearance model: classifies any new appearance to 
object/not object

59

𝑤𝑡 = argmin
𝑤

||𝑤⊤𝑥0:𝑡 − 𝑦0:𝑡||
2 + 𝜆||𝑤||2

Appearance Features 
(e.g. CNN) from 

Positive and Negative 
Examples

(Soft) Labels 
e.g. Jaccard index

Positive (label = 1)

Negative (label = 0)



Testing and recursive training

• Test model on all detections:

60

𝑤𝑡

0.32
0.48

0.76

0.24



Testing and recursive training

• Decide which one is matched to the track

61

𝑤𝑡

0.32
0.48

0.76

0.24



Testing and recursive training

• Generate training examples for time t+1

• Solve for 𝑤𝑡+1

62

Negative
Negative

Positive

Negative

𝑤𝑡+1 = argmin
𝑤

||𝑤⊤𝑥0:𝑡+1 − 𝑦0:𝑡+1||
2 + 𝜆||𝑤||2



(Some of the) good stuff with least squares

• In DCF/KCF (Henriquez et al. 2012, 2014), more 
computational savings with Fourier domain 
transformations

• In MHT-DAM (Kim et al. 2015), this is used to learn a 
different appearance model for each branch in an MHT 
tree

63

𝒘 = 𝑿⊤𝑿 + 𝜆𝑰 −1𝑿⊤𝒚 = 𝑯+ 𝝀𝑰 −𝟏𝒄

𝑯𝑘 = 𝑿(1:𝑘−1)
⊤ 𝑿(1:𝑘−1) 𝐗(𝑘)

⊤ 𝐗(𝑘)

𝒄𝑘 = 𝐗(1:𝑘−1)
⊤ 𝐲(1:𝑘−1) 𝐗(𝑘)

⊤ 𝐲(𝑘)+

+ 1) Each frame is separable!
2) Inversion does not depend 
on number of targets (tracks)

Solution of w: 



The “Recurrent Model” Version of Least Squares
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RNN

Recursive
Least Squares

𝑥0 𝑥1 𝑥𝑡 𝑥𝑡+1…

𝑥0 𝑥1 𝑥𝑡 𝑥𝑡+1…

𝑯0 𝑯1

𝑪0 𝑪1

𝑯𝑡

𝑪𝑡

𝑯𝑡+1

𝑪𝑡+1

Problem: Storing 𝒅 × 𝒅 matrix 𝑯 in RNN 

is too memory-consuming 



Low-rank Approximation

• Go back to the solution formula
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𝒘 = 𝑿⊤𝑿 + 𝜆𝑰 −1𝑿⊤𝒚 = 𝑯+ 𝝀𝑰 −𝟏𝒄

𝒘⊤𝒙 ≈

𝑖=1

𝑟

𝒄⊤𝒉𝑖𝒉𝑖
⊤𝒙 =

𝑖=1

𝑟

𝜇𝑖𝒉𝑖
⊤𝒙

Memory

Feature input 
(e.g. CNN)

The difference between this and a normal RNN/LSTM update?

Track-specific
layer



Bilinear LSTM

Adopt multi-modality in LSTM

Each column can be thought 
of as one modality

𝑐1 𝑥𝑡

𝑐2

𝑐3

𝑐4

C. Kim, FL, J. Rehg. ECCV 2018



Bilinear LSTM Model Study

• We tried 3 models for

• Appearance LSTM

• Motion LSTM

67

Bilinear LSTM
Concatenate 

Memory and Input
Normal LSTM



Experiment Details

• MOT-17 dataset (without 17-09 and 17-10) + ETH + 
PETS + TUD + TownCentre + KITTI16 + KITTI19 as 
training

• MOT-17-09, MOT-17-10 as validation

• Faster R-CNN detector with ResNet 50 head

• Public Detections

• Detailed model architecture for appearance:

68



Comparison between different appearance LSTMs

• Bilinear LSTM significantly better than other LSTM 
variants

• ID switches almost halved

• Longer training sequence make a difference

• The best sequence length is now between 20-40 frames

69



Comparison between different motion LSTMs

• Bilinear LSTM does not work as well as regular LSTM in 
motion LSTM

• Maybe the single modality of motion LSTM makes regular 
LSTM more suitable

70



Final MOT-17 Result Videos

71

MHT-DAM (Kim et al. 2015)



Final MOT-17 Result Videos

72C. Kim, FL, J. Rehg. ECCV 2018

MHT-bLSTM



Final MOT Results

• Showing all the top non-anonymous results on MOT-17 
(as of 7/31/18), sorted by IDF1:

73

Best 
in 

MOT 
2017

Ours

C. Kim, FL, J. Rehg. ECCV 2018



Conclusion: Bilinear LSTM

• We proposed Bilinear LSTM as an approach to learn 
long-term appearance models in tracking

• Experiments show that it significantly outperforms 
regular LSTM, especially in terms of identity switches

• Bilinear LSTM seems capable of learning appearance model 
with multiple different appearances, where traditional 
LSTM struggles

• We hope that this methodology can be potentially 
useful in other scenarios beyond tracking
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Other Items

• Recruiting: I’m recruiting for students and postdocs:

• Common Sense Reasoning in Computer Vision

• Uncertainty in Machine Learning

• With application in ML Fairness

• Other research that may be interesting:

• CNN generalization theory (ICLR 2017)

• Loss function for heatmap regression in face alignment/ human pose 
estimation (ICCV 2019)

• Boundary flow

• CNN on underwater imaging sonar

• Open-category learning
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Thank You!
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Chanho Kim, James M. Rehg
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Neale Ratzlaff, Wenxuan Wu, Jialin Yuan, Zhongang Qi, Saeed Khorram, Xin Li
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